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Spacelike Fluctuations of the Stress Tensor for de
Sitter Vacuum
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The two-point function characterizing the stress tensor fluctuations of a massless,
minimally coupled field for an invariant vacuum state in de Sitter spacetime is
discussed. This two-point function is explicitly computed for spacelike-separated
points which are geodesically connected. We show that these fluctuations are as
important as the expectation value of the stress tensor itself. These quantum field
fluctuations will induce fluctuations in the geometry of de Sitter spacetime. This
paper is a first step toward the computation of such metric fluctuations, which
may be of interest for large-scale structure formation in cosmology. The relevance
of our results in this context is briefly discussed.

1. INTRODUCTION

In today’ s standard inflationary scenario the amplified vacuum fluctua-

tions of the inflaton field provide the seeds for large-scale structure formation

[1±3]. It is thus of interest to understand the effect of these quantum fluctua-

tions on the universe dynamics and the implications they may have for

cosmological observations.
In most inflationary models (exponential inflation), the geometry of

spacetime during the period of inflation can be reasonably well described by

de Sitter spacetime. This spacetime also seems favored by quantum cosmology

since most accepted ª initial conditionº proposals, which are either quantum

ª tunneling from nothingº [4] or a ª no-boundaryº condition [5 ], both predict it.

It has been recently pointed out that fluctuations in the stress-energy tensor
of quantum fields may be important for some states in curved spacetimes or

even flat spacetimes with nontrivial topology [6]. Hu and Phillips, for instance,

computed the energy density fluctuations of quantum states in spatially closed
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Friedmann±Robertson±Walker models and showed that these could be as

important as the energy density itself [7]. If so, these fluctuations may induce

relevant backreaction effects on the gravitational field (the spacetime geometry).
In this paper we compute the fluctuations of the stress-energy tensor

for a scalar field in de Sitter spacetime. We consider a massless, minimally

coupled field in the Euclidean vacuum state, which is a de Sitter-invariant

state. The motivation for considering the massless minimal coupling case is

the fact that it mimics the behavior of gravitons in a curved background as

well as that of the perturbations of the inflaton field in usual inflationary
models. As for the state, the reasons why we chose the Euclidean vacuum are

twofold. On one hand, the high degree of symmetry makes the computations

simpler. On the other hand, there are at least two serious physical motivations.

First, it naturally arises in exponential inflation models, and for a massive

field it has been shown to be the state to which any other state tends asymptoti-

cally in a de Sitter background [8]; second, it is selected by the most popular
boundary conditions in quantum cosmological models [9 ].

Here we compute the two-point correlation for spacelike-separated points

of the stress-energy tensor and find that these fluctuations are important. There-

fore the backreaction of these fluctuations on the spacetime geometry could be

relevant, and will be the subject of further work within the context of stochastic
semiclassical gravity and the Einstein±Langevin equation [10]. Related to this

fact, it is worth mentioning that Abramo et al. [11, 12] have shown that

the second-order contribution to the backreaction of inflaton and gravitational

perturbations during the inflationary period can be important even below the

ª self-reproductionº scale. Although the spirit of our approach to the backreaction

problem is slightly different, we believe a partial connection with their work
may exist. These issues will also be addressed in future investigations.

The plan of the paper is the following. In Section 2 we give a very

brief review of de Sitter spacetime, its properties, and the solution of the

Klein±Gordon equation in such a background. In Section 3, following the

proposal made in ref. 13, we discuss the invariant vacuum state for the

massless, minimally coupled field that we are going to use. In Section 4 we
deal with the fluctuations of the stress-energy tensor of the scalar field in

the de Sitter background and compute the noise kernel (i.e., the two-point

correlations) which characterizes these fluctuations for spacelike-separated

points. We discuss our results in the final section. Throughout the paper we

will use the ( 1 , 1 , 1 ) sign convention of Misner et al. [14 ].

2. DE SITTER SPACETIME

In this section we give a brief summary of some useful properties and

definitions related to de Sitter spacetime. For a more detailed exposition, see

refs. 15 and 16.
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Four-dimensional de Sitter spacetime has positive constant curvature

and is thus maximally symmetric. Its 10-dimensional group of isometries is

O(4, 1). It can be represented as a hyperboloid embedded in a five-dimensional
spacetime with Minkowskian metric h AB, so that h AB j A(x) j B(x) 5 H 2 2, where

the Hubble constant H is related to the scalar curvature R 5 12H 2 and

j A(x) is the position vector in the five-dimensional Minkowskian embedding

spacetime (with A, B 5 0, . . . , 4) corresponding to the point x of de Sitter.

One can define the biscalar

Z(x,y) [ H 2 h AB j A(x) j B( y) (1)

Z . 1 for timelike separated points, Z 5 1 for points connected by null

geodesics, and Z , 1 for spacelike-separated points. It is worth emphasizing

that there is no geodesic connecting two points with Z , 2 1. For points

which are geodesically connected an alternative expression to (1) is [16 ]

Z(x, y) 5 cos ! R s (x, y)

6
(2)

where s (x, y) [ 1±2 s2(x, y), with s(x, y) being the geodesic distance between

the two points. We will use the closed coordinates ( h , x , u , w ), which cover

the whole de Sitter spacetime. The line element reads

ds2 5 (H sin h )
2 2 ( 2 d h 2 1 d x 2 1 sin2 x (d u 2 1 sin2 u d w 2)) (3)

where h P ( 0, p ) and ( x , u , w ) are the usual hyperspherical parametrizations

of the S3 spatial surfaces, which are invariant under the O(4) subgroup

of isometries.

A scalar field of mass m satisfies the Klein±Gordon equation (N 2 m2 2
j R) f (x) 5 0, where j is a dimensionless constant which determines the

coupling of the field to the spacetime curvature. We look for a set of mode
solutions that can be written as uklm(x) 5 H sin h Xk( h )Yklm( x , u , w ), where

Yklm (with k 5 0, 1, 2, . . . ; l 5 0, 1, . . . , k 2 1; and m 5 2 l, . . . , l) are

the S 3 spherical harmonics obeying D (3)Yklm 5 2 k(k 1 2)Yklm, which constitute

a (k 1 1)2-dimensional representation of O(4). Substituting into the Klein±

Gordon equation, we find that Xk( h ) satisfy the equation

d 2Xk

d h 2 1 H (k 1 1)2 1 (H sin h )
2 2 F m2 1 1 j 2

1

6 2 R G J Xk 5 0 (4)

The general solution to this equation is

Xk( h ) 5 (sin h )
2 1/2 [AkP

l
k 1 1/2( 2 cos h ) 1 BkQ

l
k 1 1/2( 2 cos h ) ] (5)

where l [ ! (9/4) 2 (12/R)(m2 1 j R), the coefficients Ak and Bk satisfy the

normalization condition
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AkB*k 2 A*k Bk 5 i
G (k 1

3±2 2 l )

G (k 1 3±2 1 l )

and P l
k 1 1/2(z) and Q l

k 1 1/2(z) are associated Legendre functions of the first and

second kind, respectively. Given such a complete set of orthonormal solutions,

one can expand the field operator as f Ã(x) 5 ( klm (aÃklmuklm(x) 1 aÃ1klmu*klm(x))
and build the associated Fock space of states in the usual way. If we require

the vacuum state to be O(4, 1)-invariant and of Hadamard type, Ak and Bk

are uniquely determined [17, 18 ]:

Ak 5
p
4

G (k 1 3±2 2 l )

G (k 1 3±2 1 l )
(6)

Bk 5 2
2i

p
Ak (7)

The corresponding state is the so-called Euclidean vacuum, also known as
the Bunch±Davies vacuum.

3. DISCUSSION OF THE CHOSEN STATE

The most natural state to choose is the Euclidean vacuum, which is

invariant under the de Sitter group of isometries and is a Hadamard state.

This is the one selected in quantum cosmology when the Hartle±Hawking

no-boundary proposal or Vilenkin’ s tunneling wave function are taken as

initial conditions [9 ]. In addition, when the field is massive, the field state
asymptotically tends to it [8 ].

Both the Green’ s functions and the renormalized expectation value of

the stress-energy tensor have been computed for the Euclidean vacuum in

several works [19, 20]:

G(1) (x, y) [ ^ 0) { f Ã(x), f Ã( y)} ) 0&

5
2H2

(4 p )2 G 1 32 2 l 2 G 1 32 1 l 2 F 1 32 2 l ,
3

2
1 l , 2;

1 1 Z(x,y)

2 2 (8)

^ TÃm n (x) & ren 5 2
g m n (x)

64 p 2 H m2 F m2 1 1 j 2
1

6 2 R G
3 F c 1 32 2 l 2 1 c 1 32 1 l 2 1 ln

R

12m2 G
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2 m2 1 j 2
1

6 2 R 2
1

18
m2R 2

1

2 1 j 2
1

6 2
2

R2 1
R2

216 0 J (9)

where F(a, b, c; z) is a hypergeometric function and c (z) [ (d/dz) ln G (z).
From (8) one can see that the symmetrized two-point function G(1)(x,y)

has an infrared divergence (as m2 ® 0) in the minimal coupling case. On

the other hand, the expectation value of the stress-energy tensor remains
finite, but is ambiguous, i.e., it depends on the way the limit m2 ® 0, j ®
0 is taken. In fact, Allen [16] proved that in the massless, minimally coupled

case there can be no Fock space built on a de Sitter-invariant vacuum. Allen

and Folacci suggested that in this case one should consider instead O(4)-

invariant states [17 ]. On the other hand, Kirsten and Garriga pointed out that

such a peculiar behavior comes from the zero mode, which corresponds to
a constant solution of the Klein±Gordon equation that appears when k 5 0

in (4) [13 ]. They also showed that a special treatment of the zero mode seems

to give an invariant vacuum. The Hilbert space of states is then the tensor

product of the zero-mode part, which is equivalent to the Hilbert space for

a one-dimensional nonrelativistic free particle times the Fock space corres-

ponding to the nonzero modes (the whole space is not a Fock space, in
agreement with Allen’ s result). The field operator is written

f Ã(x) 5 o
klm
k Þ 0

(aÃklmuklm(x) 1 aÃ1
klmu*klm (x))

1
H

! 2 p 1 QÃ1

2
1 PÃ 1 h 2

1

2
sin 2 h 2

p
2 2 2 (1 0)

where QÃand PÃare the position and momentum operators of the free-particle

Hilbert space and aÃ1
klm and aÃklm are the creation and annihilation operators of

the Fock space associated to all the modes with k Þ 0. Note that the two

functions that multiply the operators QÃand PÃ, when divided by sin h , are

solutions of Eq. (4) for k 5 0 (with m 5 j 5 0). In fact, the constant function
multiplying the operator QÃis precisely the aforesaid zero mode. These opera-

tors satisfy the usual commutation relations:

[aÃklm, aÃk8l8m8 ] 5 0, [aÃklm, aÃ1
k8l8m8 ] 5 d kk8 d ll8 d mm8, [QÃ, PÃ] 5 i (11)

[aÃklm, QÃ] 5 0, [aÃklm, PÃ] 5 0

The vacuum is defined as follows:

PÃ| 0& 5 0 (12)

aÃklm ) 0& 5 0, k Þ 0
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As a consequence of the first condition, this vacuum is not normalizable, so

strictly speaking it is not an element of the Hilbert space, but just a limit.

However, as pointed out by Garriga and Kirsten, this fact is not so strange:
it also happens for the ground state of a nonrelativistic free particle. These

authors also computed the renormalized expectation value of the stress-energy

tensor for this state:

^ TÃm n (x) & ren 5
119

13824 0p 2 R2g m n (x) 5
119

96 0p 2 H4g m n (x) (13)

Two aspects should be stressed. First, the expression is de Sitter-invariant.

Second, the energy density is lower than that of the O(4)-invariant states

introduced by Allen and Folacci, the stress-energy tensor of which is not de

Sitter-invariant. It is also remarkable that the expectation value for other
states of observables such as the dispersion of the smeared field or the stress-

energy tensor tend asymptotically ( h ® p or equivalently t ® ` , where t is

the proper time for a comoving observer) to the same value as that of the

invariant vacuum [13 ].

4. COMPUTATION OF THE STRESS-ENERGY TENSOR
FLUCTUATIONS

The quantity that characterizes the stress tensor fluctuations and which

determines, via the Einstein±Langevin equation, the fluctuations in the space-

time geometry [10] is the noise kernel, defined by the symmetrized two-

point correlation function 1±2 ^ {tÃm n (x), tÃr s ( y)} & 5 R ^ tÃm n (x), tÃr s ( y) & , where

tÃm n (x) [ TÃm n (x) 2 ^ TÃm n (x) & and TÃm n (x) [ limx8 ® x $ m n (x, x8)( f Ã(x) f Ã(x8)) with

$ m n (x, x8) [ ( ¹ x
m ¹ x8

n 2 1±2 g m n (x) ¹ x
a ¹ x8 a ) (we have chosen point-splitting regu-

larization for convenience). It is easy to see that ^ tÃm n (x)tÃr s ( y) & is equivalent

to ^ TÃm n (x)TÃr s ( y) & 2 ^ TÃm n (x) & ^ TÃr s ( y) & . Note that this expression is finite in the

following sense: one can compute it suitably regularized; then the potentially

divergent terms cancel and one can remove the regularization (letting x8 ®
x and y8 ® y):

^ TÃm n (x)TÃr s ( y) & 2 ^ TÃm n (x) & ^ TÃr s ( y) &

5 lim
x8 ® x
y8 ® y

$ m n (x, x8)$ r s ( y, y8) ( ^ f Ã(x) f Ã(x8) f Ã( y) f Ã( y8) &

2 ^ f Ã(x) f Ã(x8) & ^ f Ã( y) f Ã( y8) & ) (14)

The expression inside the parentheses is computed in the Appendix, where

we find that it is finite, as pointed out above, and equals G+(x, y)G+(x8, y8)
1 G+(x, y8)G+(x8, y). The final result after removing the regularization is
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^ tÃm n (x)tÃr s ( y) & 5 [¹ y
r ¹ x

m G+(x, y) ¹ y
s ¹ x

n G
+(x, y) 1 ¹ y

s ¹ x
m G+(x, y) ¹ y

r ¹ x
n G

+(x, y)

2 g m n (x) ¹ y
r ¹ x

a G+(x, y) ¹ y
s ¹ x a G+(x, y)

2 g r s ( y) ¹ y
a ¹ x

m G+(x, y) ¹ y a ¹ x
n G

+(x, y)

1
1

2
g m n (x)g r s ( y) ¹ y

b ¹ x
a G+(x, y) ¹ y b ¹ x a G+(x, y) ] (15)

Thus, we need to determine the Wightman function G+(x, y) [
^ 0) f Ã(x) f Ã( y) ) 0& for our chosen state. If we consider the Euclidean vacuum

for a massive, minimally coupled field and take the massless limit, the

Wightman function diverges. As already explained, this is connected to the

impossibility of having a Fock space built on a de Sitter-invariant vacuum

in the massless case. To apply Garriga and Kirsten’ s special treatment of the

zero mode, we have to consider separately the contribution from the zero
mode and that from all the rest. To compute the latter, one can use the

expression for the massive case, with the mass acting as a regulator of the

infrared divergence, subtract the contribution from the zero mode, which

contains all the infrared divergences, and then remove the regulator, i.e., take

the massless limit.

When x and y are spacelike-separated, G+(x, y) 5 1±2 (G(1)(x, y) 1 G(x,
y)) 5 1±2 G(1)(x, y) 5 RG+(x, y) since the commutator G(x, y) [ ^ 0) [f Ã(x),

f Ã( y) ]) 0& vanishes for causally disconnected points. In this case the noise

kernel coincides with expression (15). We can also take advantage of the

results in refs. 13 and 17 to write

G(1)(x, y) 5 G(1)
NZM(x, y) 1

H2

8 p 2 ^ 0) QÃ2 ) 0& (16)

where

G(1)
NZM(x, y) [

R

48 p 2 F 1

1 2 Z(x, y)
2 ln(1 2 Z(x, y))

2 ln (4 sin h x sin h y) 2 sin2 h x 2 sin2 h y G (17)

Several remarks are in order. G(1)
NZM(x, y) corresponds to the nonzero-mode

contribution, whereas the contribution from the zero mode reduces to (H2/8 p 2)
^ 0) QÃ2 ) 0& since PÃ) 0& 5 0. This term is actually divergent, but is independent of

x and y, so that it will give no contribution to (15). Furthermore, the term

ln (2 sin h x) 1 ln(2 sin h y) 1 sin2 h x 1 sin2 h y will not contribute either,

because in (15) there are always derivatives with respect to both x and y
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acting on G+(x, y). Consequently, we only need to take into account the

following part of the two-point function G(1)(x, y):

&(x, y) [
R

48 p 2 F 1

1 2 Z(x, y)
2 ln(1 2 Z(x, y)) G (18)

If we consider spacelike-separated points which are geodesically connected,
we can use expression (2) to derive the following results:

¹ x
m s (x, y) 5 s(x, y)s m (x) (19)

¹ y
r ¹ x

m s (x, y) 5 s r ( y)s m (x) (2 0)

where s m (x) is the unit vector tangent at point x to the geodesic joining x and

y. The derivatives of Z(x, y) are then

¹ x
m Z(x, y) 5 ! R

12
(1 2 Z 2 (x, y)) s m (x) (21)

¹ y
r ¹ x

m Z(x, y) 5
R

12
(1 2 Z 2(x, y)) s r ( y)s m (x) (22)

Thus, after a few algebraic manipulations, we have

¹ y
r ¹ x

m G+(x, y) 5 ¹ y
r ¹ x

m &(x, y) 5
H4

4 p 2

1 1 4Z(x, y)

(1 2 Z(x, y))2 s r ( y)s m (x) (23)

Substituting this result into (15), we get our final result for the noise kernel

corresponding to spacelike-separated points:

R ^ tÃm n (x) tÃr s ( y) & 5
H8

16 p 4 1 1 1 4Z(x, y)

(1 2 Z(x, y))2 2
2

3 [2s m (x)s n (x) s r ( y)s s ( y) 1 g m n (x) s r ( y)s s ( y)

1 g r s ( y) s m (x)s n (x) 1
1

2
g m n (x) g r s ( y) ] (24)

5. CONCLUSION

Comparing (24) with the ª squareº of (13), one realizes that the contribu-

tion from the stress-energy fluctuations is at least as important as that coming
from the expectation value. Note that in order to compare both expressions

it is convenient to consider the metric and the tangent vector components as

referred to an orthonormal base. Of course, given that H4 , , m2
pH

2, this

stochastic backreaction source is still much smaller than the dominant term
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which drives inflation (usually coming from the potential of the inflaton

scalar field) and which is responsible for the near de Sitter geometry of the

spacetime. It seems interesting to point out that the expectation value (13)
yields a negative value for the energy density because of two facts. First,

Ford and collaborators (see, for instance, ref. 6) have suggested that one may

expect important stress-energy fluctuations especially in those cases where

the energy density is negative. Second, this is in agreement with some of

the results found in ref. 12.

It is only the contribution to the variations of the potential coming from
fluctuations of the inflaton field which are usually considered when addressing

the generation of large-scale gravitational inhomogeneities. Expressions of

the sort ^ f 2(x) & 5 (H3/4 p 2) D t or related ones [21 ], where proper infrared

(related to initial conditions) and ultraviolet cutoffs (only scales larger than

the horizon are considered: l phys . H 2 1) have been imposed, are of frequent

use in the literature [1, 22 ]. These fluctuations for the smeared inflaton field
can be interpreted as if the smeared field were undergoing a sort of ª Brownian

motionº [24 ]. Such an interpretation still applies to Garriga and Kirsten’ s

vacuum, as they show when analyzing the dispersion of the smeared field

[13]. The fluctuations associated with a given cosmic scale arise from the

stochastic contribution, when leaving the horizon, from the modes of the
inflaton field perturbations with a wavelength corresponding to that scale.

The usual treatment just deals with first-order variations of the potential,

which are assumed to provide the dominant contribution, and does not take

into account the backreaction contribution from the kinetic terms of the

quantum perturbations of the inflaton field [1 ]. The latter can be modeled,

at least partially, by a free, massless, minimally coupled quantum scalar
field. This is precisely the case we considered in this paper. Furthermore, as

mentioned above, we have found that the contribution from the fluctuations

of the stress-energy tensor can be as important as the expectation value itself.

Within the inflationary context, this contribution to backreaction becomes

especially relevant above the ª self-reproductionº scale and could have

important implications for the stochastic inflation approach, where this effect
is never taken into account.

One can try to extract information about large-scale fluctuations from

correlations for spacelike-separated points which are beyond the horizon

distance [23 ]. Unfortunately, for such points Z(x, y) , 2 1 and there is no

geodesic connecting them, and thus one cannot directly use our results, which

were obtained using (19) and (2 0), which in turn rely on the particular
expression (2) for geodesically connected points. If one is interested in the

Z(x, y) , 2 1 case, then the general expression (1) should be used. The

relative importance of the fluctuations that we have found for geodesically

connected points encourages us to pursue this research further.
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APPENDIX

In this appendix we compute ^ f Ã(x) f Ã(x8) f Ã( y) f Ã( y8) & 2
^ f Ã(x) f Ã(x8) & ^ f Ã( y) f Ã( y8) & in the context of Garriga and Kirsten’ s treatment. So

we will use expression (1 0) for the field f Ã(x) and take the expectation values

with respect to the vacuum state defined in (12). First, we simply rewrite

(10) for convenience:

f Ã(x) 5 o
klm
k Þ 0

(aÃklm uklm(x) 1 aÃ1
klmu*klm (x))

1 1 QÃ u 000 (x)

^ 0) QÃ2 ) 0& 1/2 1 PÃv0(x) 2 (A1)

Using the commutation relations (11) and (12), we find

^ f Ã(x) f Ã(x8) f Ã( y) f Ã( y8) & 5 o
klm

o
k8l8m8

(uklm(x) u*klm( y) uk8l8m8(x8) u*k8l8m8 ( y8)

1 uklm(x) u*klm( y8) uk8l8m8(x8) u*k8l8m8(y)

1 o
klm

uklm(x) u*klm(x8) o
k8l8m8

uk8l8m8( y) u*k8l8m8( y8)

and

^ f Ã(x) f Ã(x8) & ^ f Ã( y) f Ã( y8) &

5 o
klm

uklm(x) u*klm(x8) o
k8l8m8

uk8l8m8( y) u*k8l8m8( y8) (A4)

From this we obtain

^ f Ã(x) f Ã(x8) f Ã( y) f Ã( y8) & 2 ^ f Ã(x) f Ã(x8) & ^ f Ã( y) f Ã( y8) &

5 G+(x, y)G+ (x8, y8) 1 G+(x, y8) G+(x8, y) (A5)

where G+(x, y) is the Wightman two-point function

G+(x, y) 5 o
klm
k Þ 0

uklm(x) u*klm( y) 1 u 000(x) u*000(y) ^ 0) QÃ2 ) 0& (A6)
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